Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(10): 16009-16019, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221454

RESUMO

Stealth radome (SR), especially with an ultra-broad and nearly transparent window between two absorption bands, plays a crucial role in stealth techniques, antenna radomes, and so on. However, current devices have the defects of narrow transmission bands, high insertion loss, and wide transition bands between the transmission and absorption bands, which are unfavorable for the stealth of broadband radar and communication systems. In this paper, a novel SR with an ultra-broad and high-efficiency inter-absorption band transparent window is proposed by combining broadband resonance lumped circuits with a multi-layer cascaded frequency-selective surface (FSS). The equivalent circuit model (ECM) and transmission line method (TLM) are provided and analyzed as a guideline for the SR design. The SR consists of a resistive lossy layer loaded with wide passband lumped circuits and two stacked lossless FSS layers to collectively achieve the high selectivity and ultra-broad transmission band. Simulated results indicate that the proposed SR exhibits an ultra-broad passband from 8.2 to 11.2 GHz (31%) with transmission amplitude more than 0.85 and two 90% absorption bands over 6.8-7.8 GHz and 12-13 GHz, and the transition bands at both sides are only 0.4 GHz and 0.8 GHz, respectively. Our findings can stimulate the promising applications of SR in broadband stealth devices with integrated ultra-broad communication capability or in other electromagnetic (EM) compatibility facilities.

2.
Sci Adv ; 8(27): eabn7905, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857461

RESUMO

The physical basis of a smart city, the wireless channel, plays an important role in coordinating functions across a variety of systems and disordered environments, with numerous applications in wireless communication. However, conventional wireless channel typically necessitates high-complexity and energy-consuming hardware, and it is hindered by lengthy and iterative optimization strategies. Here, we introduce the concept of homeostatic neuro-metasurfaces to automatically and monolithically manage wireless channel in dynamics. These neuro-metasurfaces relieve the heavy reliance on traditional radio frequency components and embrace two iconic traits: They require no iterative computation and no human participation. In doing so, we develop a flexible deep learning paradigm for the global inverse design of large-scale metasurfaces, reaching an accuracy greater than 90%. In a full perception-decision-action experiment, our concept is demonstrated through a preliminary proof-of-concept verification and an on-demand wireless channel management. Our work provides a key advance for the next generation of electromagnetic smart cities.

3.
Opt Express ; 29(14): 22136-22145, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265985

RESUMO

Metasurfaces have provided a novel way on modulating the wavefront of electromagnetic (EM) waves, where phase modulating is an important method to control EM waves. Normally, phase can be continuously modulated by changing the size of a meta-atom. For a broadband device, it is essential that phase changes linearly varying against frequency within a wide frequency interval, which is quite difficult to design, especially for the transmissive scheme. In this paper, we propose a 0-1 coding method by using genetic algorithm (GA) to realize broadband linear transmission phase and high transmission amplitude against frequency. To verify the method, a beam bending metasurface is designed based on array of six meta-atoms with step gap of 60°. Simulation and experimental results show that the metasurface deflector achieves perfect beam refraction from 8 to 12 GHz, which is consistent with theoretical calculations. Moreover, the working efficiency is kept at about 75%, with the variation of the frequency, which demonstrates the good stability of the metasurface. This method offers a new insight into the designing of broadband devices.

4.
Opt Express ; 29(12): 19193-19201, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154160

RESUMO

Perfect absorbers are highly desired in many engineering and military applications, including radar cross section (RCS) reduction, cloaking devices, and sensor detectors. However, most types of present absorbers can only absorb space propagation waves, but absorption for surface waves has not been researched intensively. Surface waves are easily excited on the interfaces between metal and dielectrics for electronic devices, which decreases their working performances due to the electromagnetic disturbances. Thus, it is of great significance to design appropriate absorbers to dissipate undesirable surface waves. Here, we propose the concept of a surface wave absorber, analyze its working principle, and prove its good performances experimentally. To demonstrate our concept, we design and fabricate a realistic surface wave absorber that is fixed on a metal surface. Experiments are performed to verify its electromagnetic characteristics. The results show that our designed meta-absorber can achieve an excellent surface wave absorption within a wide frequency window (5.8-11.2 GHz) and exhibit a very high efficiency over than 90%, but only with the thickness of 1 mm (0.028 λ). Our device can help to solve the issues of absorption at large angles, and it can find wide applications in large antenna array design and other communication systems.

5.
Opt Express ; 29(5): 6434-6444, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726164

RESUMO

Absorbers have high potential application values in the military field, such as electronic screening, radar cross-section reduction and invisible cloaking. However, most methods have the defects of narrow bandwidth, low absorptivity, complex three-dimensional structure and fixed polarizations. In this paper, we realize an ultra-broadband and full-polarization planar metamaterial absorber (PMA) with a three-layer composite structure, which exhibits multi-resonant and impedance matching properties by combining the ultra-light foams and indium tin oxide (ITO) films. The bottom two layers achieve a high-efficiency absorption rate at the low and medium spectrum, while the upper layer realizes a absorption property at a high frequency. Also, an equivalent circuit model is extracted to explain its operating mechanism. The experimental results show that our meta-absorber can achieve great absorber performance of better than 90% within 1-18 GHz for full-polarization incident waves, which is in great agreement with the numerical simulations. Moreover, our device is insensitive to oblique incidences and polarizations and possesses the physical characteristics of an ultralight, weighing 0.6 kg for a square meter, which is only 1/85.0-1/126.7 of the conventional absorbers under the same size. All these excellent performances determine that our research can be a good candidate for military stealth materials.

6.
Opt Express ; 28(21): 31216-31225, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115100

RESUMO

Full-space metasurfaces (MSs) attract significant attention in the field of electromagnetic (EM) wave manipulation due to their advantages of functionality integration, spatial integration and wide applications in modern communication systems. However, almost all reported full-space metasurfaces are realized by multilayer dielectric cascaded structures, which not only has the disadvantages of high cost and complex fabrication but also is inconvenient to device integration. Thus, it is of great interest to achieve high-efficiency full-space metasurfaces through simple design and easy fabrication procedures. Here, we propose a full-space MS that can efficiently manipulate the circularly polarized (CP) waves in dual frequency bands by only using a single substrate layer, the reflection and transmission properties can be independently controlled by rotating the optimized meta-structures on the metasurface. Our full-space metasurface has the potential to design multifunctional devices. To prove the concept, we fabricate the device and measured it in microwave chamber. For the reflection mode, our metasurface can behave as a CP beam splitter at the frequency of f1 = 8.3 GHz and exhibit high efficiencies in the range of 84.1%-84.9%. For the transmission mode, our metasurface acts as a meta-lens at the frequency of f2 = 12.8 GHz for the LCP incidence, and the measured relative efficiency of the meta-lens reaches about 82.7%. Our findings provide an alternative way to design full-space metasurfaces and yield many applications in EM integration systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...